REKLÁM

Közösségi média és orvostudomány: Hogyan segíthetnek a bejegyzések az egészségügyi állapotok előrejelzésében

A Pennsylvaniai Egyetem orvostudósai arra a következtetésre jutottak, hogy a közösségi médiában megjelent bejegyzések alapján előre megjósolhatók az egészségügyi állapotok

a közösségi média ma már életünk szerves része. 2019-ben legalább 2.7 milliárd ember használja rendszeresen az olyan online közösségi média platformokat, mint a Facebook, a Twitter és az Instagram. Ez azt jelenti, hogy több mint egymilliárd személy oszt meg napi rendszerességgel információkat az életéről ezeken a nyilvános platformokon. Az emberek szabadon megosztják gondolataikat, tetszéseiket és nemtetszéseiket, érzéseiket és személyiségeiket. A tudósok azt vizsgálják, hogy ezek a klinikai egészségügyi rendszeren kívül keletkezett információk feltárhatják-e a betegségek lehetséges előrejelzőit a mindennapi életben. betegek amelyek egyébként rejtve maradhatnak az egészségügyi személyzet és a kutatók előtt. Korábbi tanulmányok kimutatták, hogy a Twitter hogyan képes előre jelezni a szívbetegségek halálozási arányát, vagy nyomon követni a közvéleményt az egészségügyi vonatkozású kérdésekben, például a biztosításban. A közösségi média információit azonban ez idáig nem használták fel egészségügyi állapotok egyéni szintű előrejelzésére.

Egy új tanulmány június 17-én jelent meg PLoS ONE első alkalommal mutatta be a betegek (akik beleegyezését adtak) elektronikus kórlapjainak összekapcsolását közösségi média profiljaikkal. A kutatók arra törekedtek, hogy megvizsgálják – egyrészt azt, hogy az egyén egészségi állapota előre jelezhető-e a felhasználó közösségi oldalain közzétett nyelvezet alapján, másrészt pedig azt, hogy azonosíthatók-e konkrét betegségjelzők.

A kutatók automatizált adatgyűjtési technikával elemezték 999 beteg teljes Facebook-történetét. Ez azt jelentette, hogy körülbelül 20 949,000 Facebook állapotfrissítésben 500 millió szót kellett elemezni legalább 21 szót tartalmazó bejegyzésekkel. A kutatók három modellt fejlesztettek ki, hogy minden egyes betegre vonatkozóan előrejelzéseket készítsenek. Az első modell kulcsszavak azonosításával elemezte a Facebook-bejegyzések nyelvezetét. A második modell a betegek demográfiai adatait, például életkorát és nemét elemezte. A harmadik modell ezt a két adatkészletet egyesítette. Összesen XNUMX egészségügyi állapotot vizsgáltak, beleértve a cukorbetegséget, a szorongást, a depressziót, a magas vérnyomást, az alkoholfogyasztást, az elhízást és a pszichózisokat.

Az elemzés azt mutatta, hogy mind a 21 egészségügyi állapot előre látható volt a Facebook-bejegyzésekből. És 10 körülményt jobban megjósoltak a Facebook-bejegyzések, mint akár a demográfiai adatok. A kiemelkedő kulcsszavak például az „ital”, „részeg” és „palack” voltak, amelyek előre jelezték az alkoholfogyasztást, és az olyan szavakat, mint az „Isten”, „imádkozz” vagy „család”, 15-ször nagyobb valószínűséggel használták a cukorbetegek. Az olyan szavak, mint a „néma” a kábítószerrel való visszaélés és a pszichózis indikátoraiként szolgáltak, az olyan szavak, mint a „fájdalom”, „sírás” és „könnyek” pedig az érzelmi szorongást hozták összefüggésbe. Az egyének által használt Facebook nyelvezet nagyon hatékony volt a jóslatok készítésében – különösen a cukorbetegséggel és a mentálisan Egészség állapotok, beleértve a szorongást, a depressziót és a pszichózist.

A jelenlegi tanulmány azt sugallja, hogy a betegek számára egy olyan önkéntes rendszert lehetne kidolgozni, ahol a betegek lehetővé teszik közösségi médiában közzétett bejegyzéseik elemzését azáltal, hogy hozzáférést biztosítanak ezekhez az információkhoz a klinikusok számára. Ez a megközelítés a közösségi médiát rendszeresen használó emberek számára lehet a legértékesebb. Mivel a közösségi média tükrözi az emberek gondolatait, személyiségét, mentális állapotát és egészségi viselkedését, ezek az adatok felhasználhatók egy betegség kialakulásának vagy súlyosbodásának előrejelzésére. Ami a közösségi médiát illeti, az adatvédelem, a tájékozott hozzájárulás és az adatok tulajdonjoga kulcsfontosságú lesz. A közösségi média tartalmainak sűrítése, összegzése, értelmezések készítése az elsődleges cél.

A jelenlegi tanulmány új mesterséges intelligencia-alkalmazások kifejlesztéséhez vezethet az egészségügyi állapotok előrejelzésére. A közösségi média adatai számszerűsíthetők, és új utakat kínálnak a betegségek viselkedési és környezeti kockázati tényezőinek felmérésére. Az egyén közösségi média adatait „social mediome”-nak nevezik (hasonlóan a genomhoz – a gének teljes halmaza).

***

{Az eredeti kutatási cikket a hivatkozott forrás(ok) listájában lent található DOI linkre kattintva olvashatja el}

Forrás (ok)

Merchant RM et al. 2019. Az egészségügyi állapotok előreláthatóságának értékelése közösségi média bejegyzésekből. PLOS ONE. 14. (6). https://doi.org/10.1371/journal.pone.0215476

SCIEU csapat
SCIEU csapathttps://www.ScientificEuropean.co.uk
Scientific European® | SCIEU.com | Jelentős előrelépések a tudományban. Hatás az emberiségre. Inspiráló elmék.

Iratkozzon fel hírlevelünkre

A legfrissebb hírekkel, ajánlatokkal és külön értesítésekkel kell frissíteni.

Legnépszerűbb cikkek

A COVID-19 helyzet Európa-szerte nagyon súlyos

A COVID-19 helyzet Európában és Közép-Ázsiában nagyon...

A neuro-immun tengely azonosítása: a jó alvás véd a szívbetegségek kockázatától

Egy új egereken végzett tanulmány kimutatta, hogy az elegendő alvás...

A COP28-on elindult az épületek áttörése és a cement áttörés  

Az ENSZ-keretrendszer részes feleinek 28. konferenciája (COP28)...
- Reklám -
94,873VentilátorokMint
47,763KövetőKövesse
1,772KövetőKövesse
30ElőfizetőkFeliratkozás